Department of Physics, University of Florida Spring 2014-15
PHZ 7608 Minicourse

Problem Set 1: Due February 18

1. In post-Newtonian theory, there appears a “superpotential” X defined by
X(t,z) = G/p(t, 2| — |

Show that V2X = 2U, and that
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2. For £ = 2, 3 and 4, show explicitly that n'‘“n{L) = [¢1/(2¢ — 1) P,(11), where
w=n'-n.

3. Suppose that the solar system is filled with a uniform distribution of dark matter
with constant mass density p. Taking this distribution into account, calculate
the modified gravitational potential of the Sun, and find the perturbing force
f acting on a planetary orbit. Find the relation between orbital period P and
semi-major axis a for a circular orbit, and calculate the secular changes in the
planet’s orbital elements. Place a bound on p using suitable solar-system data.

4. Consider a spherical body on an inclined, circular orbit about an axisymmetric
body of radius R and even multipole moments J,, with ¢/ = 2, 4, 6, and so
on. To first order in perturbation theory, calculate the secular changes in the
relevant orbital elements. In particular, show that:

(a) the inclination is constant, that is, Av = 0;

(b) the line of nodes changes by an amount
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where Co =1, Cy = —=3(1 — Isin®¢), and Cg = 22(1 — $sin® ¢ + Zsiny).
5. Show that g.s = /=8 gas, Where gos is the matrix inverse to g, and g =
det[g*®®] = g. If we define g®* := % — h*? and h*? is of order GG, show that
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where indices on h®? are lowered and contracted with the Minkowski metric.



6. Consider the Schwarzschild metric in harmonic coordinates, given by
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where n/ := 27/ry, is a radial unit Vector whose index is lowered with the
Euclidean metric d;i, so that n; := §;xn". Show explicitly that
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where R := 2GM/c?, and verify that the harmonic gauge condition dsg™® = 0
is satisfied.

7. Verify the identities
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Using these identities verify that the near-zone expansion
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modulo surface integrals denoted by h*°[0.#], where Z"(t) := [ 7®z"d’z and
the symbol (n) on top of Z denotes the number of time derivatives.



