Problem Set 1: Due February 18

1. In post-Newtonian theory, there appears a "superpotential" X defined by

$$
X(t, \boldsymbol{x})=G \int \rho\left(t, \boldsymbol{x}^{\prime}\right)\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| d^{3} x^{\prime}
$$

Show that $\nabla^{2} X=2 U$, and that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} X(t, \boldsymbol{x})= & -G \int \rho^{\prime} \frac{d \boldsymbol{v}^{\prime}}{d t} \cdot \frac{\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& +G \int \frac{\rho^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}\left\{v^{\prime 2}-\frac{\left[\boldsymbol{v}^{\prime} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right]^{2}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{2}}\right\} d^{3} x^{\prime}
\end{aligned}
$$

2. For $\ell=2,3$ and 4 , show explicitly that $n^{\prime\langle L\rangle} n^{\langle L\rangle}=[\ell!/(2 \ell-1)!!] P_{\ell}(\mu)$, where $\mu:=\boldsymbol{n}^{\prime} \cdot \boldsymbol{n}$.
3. Suppose that the solar system is filled with a uniform distribution of dark matter with constant mass density ρ. Taking this distribution into account, calculate the modified gravitational potential of the Sun, and find the perturbing force \boldsymbol{f} acting on a planetary orbit. Find the relation between orbital period P and semi-major axis a for a circular orbit, and calculate the secular changes in the planet's orbital elements. Place a bound on ρ using suitable solar-system data.
4. Consider a spherical body on an inclined, circular orbit about an axisymmetric body of radius R and even multipole moments J_{ℓ}, with $\ell=2,4,6$, and so on. To first order in perturbation theory, calculate the secular changes in the relevant orbital elements. In particular, show that:
(a) the inclination is constant, that is, $\Delta \iota=0$;
(b) the line of nodes changes by an amount

$$
\Delta \Omega=-3 \pi \cos \iota \sum_{\ell=2}^{\infty} J_{\ell}\left(\frac{R}{p}\right)^{\ell} C_{\ell}
$$

where $C_{2}=1, C_{4}=-\frac{5}{2}\left(1-\frac{7}{4} \sin ^{2} \iota\right)$, and $C_{6}=\frac{35}{8}\left(1-\frac{9}{2} \sin ^{2} \iota+\frac{33}{8} \sin ^{4} \iota\right)$.
5. Show that $g_{\alpha \beta}=\sqrt{-\mathfrak{g}} \mathfrak{g}_{\alpha \beta}$, where $\mathfrak{g}_{\alpha \beta}$ is the matrix inverse to $\mathfrak{g}^{\alpha \beta}$, and $\mathfrak{g}=$ $\operatorname{det}\left[\mathfrak{g}^{\alpha \beta}\right]=g$. If we define $\mathfrak{g}^{\alpha \beta}:=\eta^{\alpha \beta}-h^{\alpha \beta}$, and $h^{\alpha \beta}$ is of order G, show that

$$
\begin{aligned}
(-g)= & 1-h+\frac{1}{2} h^{2}-\frac{1}{2} h^{\mu \nu} h_{\mu \nu}+O\left(G^{3}\right), \\
g_{\alpha \beta}= & \eta_{\alpha \beta}+h_{\alpha \beta}-\frac{1}{2} h \eta_{\alpha \beta}+h_{\alpha \mu} h_{\beta}^{\mu}-\frac{1}{2} h h_{\alpha \beta} \\
& +\left(\frac{1}{8} h^{2}-\frac{1}{4} h^{\mu \nu} h_{\mu \nu}\right) \eta_{\alpha \beta}+O\left(G^{3}\right),
\end{aligned}
$$

where indices on $h^{\alpha \beta}$ are lowered and contracted with the Minkowski metric.
6. Consider the Schwarzschild metric in harmonic coordinates, given by

$$
\begin{aligned}
& g_{00}=-\frac{1-R / 2 r_{\mathrm{h}}}{1+R / 2 r_{\mathrm{h}}}, \\
& g_{j k}=\left(\frac{1+R / 2 r_{\mathrm{h}}}{1-R / 2 r_{\mathrm{h}}}\right) n_{j} n_{k}+\left(1+R / 2 r_{\mathrm{h}}\right)^{2}\left(\delta_{j k}-n_{j} n_{k}\right),
\end{aligned}
$$

where $n^{j}:=x^{j} / r_{\mathrm{h}}$ is a radial unit vector, whose index is lowered with the Euclidean metric $\delta_{j k}$, so that $n_{j}:=\delta_{j k} n^{k}$. Show explicitly that

$$
\begin{aligned}
\mathfrak{g}^{00} & =-\frac{(1+R / 2 r)^{3}}{1-R / 2 r} \\
\mathfrak{g}^{j k} & =\delta^{j k}-\left(\frac{R}{2 r}\right)^{2} n^{j} n^{k}
\end{aligned}
$$

where $R:=2 G M / c^{2}$, and verify that the harmonic gauge condition $\partial_{\beta} \mathfrak{g}^{\alpha \beta}=0$ is satisfied.
7. Verify the identities

$$
\begin{align*}
\tau^{0 j} & =\partial_{0}\left(\tau^{00} x^{j}\right)+\partial_{k}\left(\tau^{0 k} x^{j}\right), \\
\tau^{j k}= & \frac{1}{2} \partial_{00}\left(\tau^{00} x^{j} x^{k}\right)+\frac{1}{2} \partial_{p}\left(2 \tau^{p(j} x^{k)}-\partial_{q} \tau^{p q} x^{j} x^{k}\right), \\
\tau^{0 j} x^{k}= & \frac{1}{2} \partial_{0}\left(\tau^{00} x^{j} x^{k}\right)+\tau^{0[j} x^{k]}+\partial_{p}\left(\tau^{0 p} x^{j} x^{k}\right), \\
\tau^{j k} x^{n}= & \frac{1}{2} \partial_{0}\left(2 \tau^{0(j} x^{k)} x^{n}-\tau^{0 n} x^{j} x^{k}\right) \\
& +\frac{1}{2} \partial_{p}\left(2 \tau^{p(j} x^{k)} x^{n}-\tau^{n p} x^{j} x^{k}\right) . \tag{0.1}
\end{align*}
$$

Using these identities verify that the near-zone expansion

$$
h_{\mathscr{N}}^{00}(t, \boldsymbol{x})=\frac{4 G}{c^{4}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!c^{\ell}}\left(\frac{\partial}{\partial t}\right)^{\ell} \int_{\mathscr{M}} \tau^{00}\left(t, \boldsymbol{x}^{\prime}\right)\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{\ell-1} d^{3} x^{\prime}
$$

takes the form

$$
\begin{aligned}
h_{\mathscr{N}}^{00}= & \frac{4 G}{c^{2}}\left\{\int_{\mathscr{M}} \frac{c^{-2} \tau^{00}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}+\frac{1}{2 c^{2}} \frac{\partial^{2}}{\partial t^{2}} \int_{\mathscr{M}} c^{-2} \tau^{00}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| d^{3} x^{\prime}\right. \\
& -\frac{1}{6 c^{3}} \mathcal{I}^{k k}(t)+\frac{1}{24 c^{4}} \frac{\partial^{4}}{\partial t^{4}} \int_{\mathscr{M}} c^{-2} \tau^{00}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3} d^{3} x^{\prime} \\
& -\frac{1}{120 c^{5}}\left[\left(4 x^{k} x^{l}+2 r^{2} \delta^{k l}\right) \mathcal{I}^{(5)}(t)-4 x^{k} \mathcal{I}^{(5)} k l l(t)+\mathcal{I}^{k k l l}(t)\right] \\
& \left.+O\left(c^{-6}\right)\right\}+h^{00}[\partial \mathscr{M}],
\end{aligned}
$$

modulo surface integrals denoted by $h^{00}[\partial \mathscr{M}]$, where $\mathcal{I}^{L}(t):=\int_{\mathscr{N}} \tau^{00} x^{L} d^{3} x$ and the symbol (n) on top of \mathcal{I} denotes the number of time derivatives.

